Welcome back, Valentin Albillo. You last visited: Today, 02:03 (User CP - Log Out)
Current time: 27th July, 2023, 03:12
View New Posts | View Today's Posts | Private Messages (Unread 0, Total 184)

HP Forums / HP Calculators (and very old HP Computers) / General Forum $\nabla /$ Clever fast Mandelbrot - please explain!

Clever fast Mandelbrot - please explain!

Threaded Mode | Linear Mode
4th September, 2020, 12:12 (This post was last modified: 4th September, 2020 12:14 by EdS2.)
Post: \#1
$\begin{array}{ll}\text { EdS2 } 8 & \text { Posts: } 525 \\ \text { Senior Member } & \text { Joined: Apr } 2014\end{array}$

Clever fast Mandelbrot - please explain!

I refer to Valentin Albillo's remarkable exposition VA040b, calculating the area of the Mandelbrot set, as linked here.
The specific optimisation I'd like to understand is the shortcut which detects the two otherwise very expensive central areas: the main cardioid and the largest circular bud, aka the main disc. Normally these are rendered in black, and take the maximum number of iterations for each point evaluated.

Valentin notes:

Quote:

if we can quickly check whether a given z belongs or not to the main cardioid or the main disk we'll save lots of running time and as it happens, indeed we actually can, using just a few steps for the RPN version or just 2 lines of code for the BASIC version.

All this is clear, but it's the two lines of code, or the few steps, which have me baffled, as to how exactly they determine membership in these two areas.

Any explanations welcome!

Ref:
HP Article VA040b - Boldly Going - Mandelbrot Set Area (HP-71B)

Quote:

Line 3: checking whether the point belongs to the main cardioid (thus, to M).
Line 4: checking whether the point belongs to the main disk (thus, to M)

See also

HP Article VA040a - Boldly Going - Mandelbrot Set Area (HP42S)

Quote:

Steps 45-53: checking whether the point belongs to the main cardioid (thus, to M). \{ 9 steps \}
Steps 54-59: checking whether the point belongs to the main disk (thus, to M). \{ 6 steps $\}$

Posts: 970
Joined: Feb 2015
Warning Level: 0\%

RE: Clever fast Mandelbrot - please explain!
Hi, EdS2:

EdS2 Wrote:

I refer to Valentin Albillo's remarkable exposition VA040b, calculating the area of the Mandelbrot set [...].

Thank you very much for your continued interest in my productions, much appreciated (and keep doing it, it will encourage me to create more ... (b))

Quote:

The specific optimisation I'd like to understand is the shortcut which detects the two otherwise very expensive central areas: the main cardioid and the largest circular bud, aka the main disc. Normally these are rendered in black, and take the maximum number of iterations for each point evaluated.

Correct, they're incredibly expensive to evaluate, most specially if the max. number of iterations is huge.

Quote:

All this is clear, but it's the two lines of code, or the few steps, which have me baffled, as to how exactly they determine membership in these two areas.
Any explanations welcome!

But f course !. I'll explain it for the HP42S version, which is based on the HP-71 version (which I wrote first, then adapted for the HP42S):

1) Steps 45-53: checking whether the point belongs to the main cardioid (thus, to M). \{ 9 steps \}

First of all, mathematically we have, using the main cardioid's equation:
All points C within the main cardiod $C<\mathbf{1} / \mathbf{4}^{*}\left(\mathbf{2} \mathbf{e}^{\boldsymbol{t i}}-\mathbf{e}^{\mathbf{2 t i}}\right)$ are in \boldsymbol{M},
where \mathbf{C} is a complex number representing a point, \mathbf{i} is the imaginary unit, \mathbf{t} is the $\operatorname{argument} \arg (\mathbf{C})$, and $0<=\boldsymbol{t}<=2 \mathrm{Pi}$.
Now, we have (in HP-71B BASIC code which will be momentarily converted to HP42S RPN):

$$
\begin{aligned}
& \mathbf{2 e}^{\mathbf{t i}}=2 * \operatorname{EXP}(0, \operatorname{ARG}(C))=\mathbf{2} * \mathbf{S G N}(\mathbf{C}) \\
& \mathbf{e}^{\mathbf{2 t i}}=\operatorname{EXP}\left(0,2^{*} \operatorname{ARG}(C)\right)=\operatorname{EXP}(0, \operatorname{ARG}(C))^{\wedge} 2=\mathbf{S G N}(\mathbf{C})^{\wedge} \mathbf{2}
\end{aligned}
$$

so the expression becomes:

$C<1 / 4^{*}\left(2^{*} \operatorname{SGN}(C)-\operatorname{SGN}(C)^{\wedge} 2\right)$

To speed the computation we use an auxiliary variable $\mathbf{Z}=\operatorname{SGN}(\mathrm{C})$ and the expression now becomes:

$$
C<1 / 4^{*}\left(2 * Z-Z^{\wedge} 2\right)->C<1 / 4^{*}\left(Z^{*}(2-Z)\right)->\text { ABS }(C)<\mathbf{1} / 4^{*} \mathbf{A B S}\left(Z^{*}(2-Z)\right)
$$

which we convert to RPN like this:

[^0]M also contains a main disk with radius $\mathbf{1 / 4}$ and centered at $(-1,0)$:
point $\mathbf{C}=(x, y)$
the equation of the circle is: $(\mathbf{x + 1})^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=(\mathbf{1 / 4})^{\mathbf{2}}$, so if $(x+1)^{2}+y^{2}<(1 / 4)^{2}$, then the point belongs to the circle, i.e. is in M

Taking the square root, we have: $\operatorname{sqrt}\left((x+1)^{2}+y^{2}\right)<1 / 4$, which in $\mathbf{H P - 7 1 B}$ code is: if $\mathbf{A B S}(\mathbf{C}+\mathbf{1})<\mathbf{1} / \mathbf{4}$ then the point belongs to the circle, i.e. in \mathbf{M}

Well, I hope this leaves the matter crystal-clear for you but if there's still something you want explained, just ask and I'd be glad to obligue.

Again, thanks for your interest and best regards. Have a nice weekend and take care.
V.

PM WWW Q FIND

7th September, 2020, 10:19
Post: \#3

EdS2 8

Senior Member

Posts: 525
Joined: Apr 2014

RE: Clever fast Mandelbrot - please explain!

Many thanks Valentin! (I may need a little time to digest and experiment. My brain is not as agile as it was.)

RE: Clever fast Mandelbrot - please explain!

I wrote a very fast Mandlebrot plotter in the late 80 's for the PC. One very effective optimization was to consider a rectangular area. Divide it into 4 sub-rectangles. Now compute the value at the 9 points of intersection (top left, top center, top right, middle left, middle center, middle right, bottom left, bottom center, bottom right).

If all 9 points generate the same value then assume that the entire rectangle is that value. Otherwise recurse on the subrectangles. While this optimization isn't always correct, in practice, it provides outstanding results.

Some day, I'd like to port that code to the Prime.
As I recall, I also realized that the Mandlebrot set and the Julia set are the same equation, but using two different planes of a 4-dimensional space. My program lets you plot the equation on different planes, resulting in some really cool effects.

<< Next Oldest | Next Newest »
Enter Keywords
Search Thread

View a Printable Version
Send this Thread to a Friend
Subscribe to this thread

User(s) browsing this thread: Valentin Albillo*

[^0]: 2) Steps 54-59: checking whether the point belongs to the main disk (thus, to M). \{ 6 steps \}
